

Year 12 Chemistry

Acids and Bases Test 2021

Time allowed:	45 minutes

Mark =/48

Name: Auswers

SECTION 1

MULTIPLE CHOICE

10 marks

- 1. In which group would all three oxides be classified as basic oxides?
 - A. CO₂, SiO₂, CuO
 - B. P₄O₁₀, SO₂, CO₂
 - (C.) CaO, Na₂O, K₂O.
 - D. ZnO, SO₂, Na₂O
- 2. In which of the following reactions is water behaving as an acid?
 - A. $H_2O(g) + Mg(s) \rightleftharpoons MgO(s) + H_2(g)$
 - (B.) $H_2O(\ell) + CH_3NH_2(aq) \rightleftharpoons CH_3NH_3^+(aq) + OH^-(aq)$
 - C. $2H_2O(\ell) \rightleftharpoons 2H_2(g) + O_2(g)$
 - D. $H_2O(I) + H_2S(g) \rightleftharpoons HS^-(aq) + H_3O^+(aq)$
- 3. Consider the following information regarding weak acids.
 - Solution 1:

20.0 mL of 0.100 mol L^{-1} HC ℓ O has a pH of 4.27

- Solution 2:
- 20.0 mL of 0.100 mol L⁻¹ HCN has a pH of 5.11

The two solutions are combined. Which of the following would be present in the mixture at the highest concentration?

- A. H₃O⁺
- (B.) HCN
- C. HCℓO
- D. CℓO-
- 4. Which of the following equations shows the hydrogen sulfide ion, HS⁻ acting as a base?
 - \widehat{A} . $HS^{-}(aq) + NH_4^{+}(aq) \rightleftharpoons H_2S(aq) + NH_3(aq)$
 - B. $2HS^{-}(aq) + Cu^{2+(aq)} \rightleftharpoons Cu(HS)_{2}(s)$
 - C. $HS^{-}(aq) + F_{2}(g) \rightleftharpoons S(s) + H^{+}(aq) + 2F^{-}(aq)$
 - D. $HS^{-1}(aq) + O^{2-1}(aq) \rightleftharpoons OH^{-1}(aq) + S^{2-1}(aq)$

- 5. Which of the following statements is incorrect?
 - A. The higher the pH of a solution, the higher its [OH-].
 - B. The higher the pH of a solution, the more acidic it is.
 - C. The lower the alkalinity of a solution, the lower its pH.
 - D. The higher the concentration of OH^- in a solution, the lower its $[H^+]$.
- 6. 'Milk of magnesia' consists of a saturated solution of magnesium hydroxide, and is used to treat acid indigestion. If the pH of milk of magnesia is 10, the concentration of $Mg(OH)_2$ in the solution is :
 - A. $1.0 \times 10^{-10} \text{ mol L}^{-1}$
 - B. 5 x 10⁻¹¹ mol L⁻¹
 - C. 1.0 x 10⁻⁴ mol L-¹
 - D. 5.0 x 10⁻⁵ mol L⁻¹
- 7. A chemist carried out an experiment to investigate the self-ionisation of water.

$$H_2O(\ell) + H_2O(\ell) \rightleftharpoons H_3O^+(aq) + OH^-(aq)$$

The data collected by the chemist is shown in the graph below.

Which of the following is **not** a conclusion that can be made from the data collected in this experiment?

- A. An increase in water temperature will favour the forward reaction.
- B. An increase in water temperature will increase the forward reaction rate.
- C. The self-ionisation of water is exothermic.
- D. The concentration of $H_3O^+(aq)$ in water is temperature-dependant.

8. A chemist prepares solutions of nitrous acid and hydrocyanic acid that have the same concentration

The Ka values of these acids are:

- Nitrous acid (HNO₂) $Ka = 4.6 \times 10^{-4}$
- Hydrocyanic acid (HCN) $Ka = 6.17 \times 10^{-10}$

Which acid is stronger and which has the highest pH

	STRONGER ACID	HIGHER pH
(A.)	Nitrous acid	Hydrocyanic acid
B.	Nitrous acid	Nitrous acid
C.	Hydrocyanic acid	Hydrocyanic acid
D.	Hydrocyanic acid	Nitrous acid

9. The following three reactions all have K values > 1.

$$HSO_4^-(aq) + NO_2^-(aq) \rightleftharpoons HNO_2(aq) + SO_4^{2-}(aq)$$

$$HNO_2(aq) + CN^-(aq) \rightleftharpoons HCN(aq) + NO_2^-(aq)$$

$$HC\ell O_4(aq) + SO_4^{2}(aq) \rightleftharpoons HSO_4(aq) + C\ell O_4(aq)$$

Rank the bases above in order from strongest to weakest

$$C\ell O_4^- > SO_4^{2-} > NO_2^- > CN^-$$

$$CN^{-} > NO_{2}^{-} > SO_{4}^{2-} > C\ell O_{4}^{-}$$

$$C\ell O_4^- > NO_2^- > SO_4^{2-} > CN^-$$

- D. $CN^2 > NO_2^2 > C\ell O_4^2 > SO_4^2$
- 10. Which of the following solutions describes the buffer with the highest buffering capacity?
 - A. Equal volumes of $0.5 \text{ molL}^{-1} \text{ Na}_2\text{HPO}_4$ and $0.5 \text{ molL}^{-1} \text{ K}_3\text{PO}_4$
 - B. Equal volumes of 2.0 molL⁻¹ Na_3PO_4 and 2.0 molL⁻¹ K_3PO_4
 - C. Equal volumes of 2.0 molL⁻¹ Na₃PO₄ and 1.0 molL⁻¹ KOH

 Equal volumes of 2.0 molL⁻¹ Na₂HPO₄ and 1.0 molL⁻¹ KOH

(38 marks)

(8 marks)

(2 marks)

	o real 12 ellellistry			ricias ana bas
SEC	TION 2	SHORT AN	NSWER	
Que	stion 1			
Write	e ionic equations for the fo	ollowing:		
(a)	The hydrogencarbonate	ion acting as Brons	ted-Lowry base.	
-	HCO	(ag) + 12,0	DYD= HCO.	3 (ag) +
(b)	The hydrocyanic acid (l	HCN) acting as a Bro	onsted-Lowry acid.	
	HC Wast	H_0012	H , 0 + (ag)	+ CNS
	For the equation you w	vrote in (b) identify	the conjugate acid-ba	se pairs
Aci	d-base pair 1		Acid- base pair 2	-

Acid: HCN	Acid: H30	, 12
Base: C N ¯	Base: H ₂ O	
	*	(2 marks)
(d) A 0.1 molL^{-1} solution of HCN has a p	H = 5.2. Calculate the % ionisation of the	HCN.
Olo ionisation	X TWHEN CHOCHE	100
	105.2 /161 X1	00
	6,31 × 10 3 0/2	5 1
	70	
		(2 marks)

Question 2

(8 marks)

(a) The following ionic salts were all dissolved separately in equal volumes of water at 25°C. Complete the table below indicating whether the solutions would be acidic, basic or neutral.

Salt	Acid, base or neutral
Potassium nitrate	Newtra 1
Ammonium chloride	acidiz
sodium ethanoate	besic
Potassium hydrogensulfate	acidic

(4 marks)

(b) Another salt, ammonium phosphate was dissolved in water and found to have a pH of 8.1. Use your knowledge of acid/base chemistry to account for this observation. Use equations to support your answer.

V	D N Aut 14 1 12 0 Ln = NH3 (ag) + H30+
~	@ PO43-+ 4,0 = HPO4 +OH ON POH +3HLO > H, POX+30H
~	2 proceeds to a greater extent than (1)
\vee	EON-J 2 EAGOT PH > 7
	(4 marks)

Ouestion 3

(9 marks)

The pH within the human body is tightly controlled by a series of buffer systems. One of the major buffers present is the phosphate buffering system, as shown below:

Reaction1:

$$H_3PO_4$$
 (aq) + H_2O

$$\Rightarrow$$
 H₃O⁺ (aq) +

$$H_2PO_4$$
 (aq)

Reaction 2:

$$H_2PO_4^-(aq) + H_2O \rightleftharpoons H_3O^+(aq) +$$

Reaction 3:

$$HPO_4^{2-}(aq) + H_2O$$

$$\Rightarrow$$
 H₃O⁺ (ag) +

(b) The value for the equilibrium constant (Ka) for Reaction 2 is 6.23 x 10⁻⁸ at 25°C. This value changes to 7.82 x 10⁻⁸ at 40°C. Is it an endothermic or exothermic reaction? Circle the correct alternative below and explain your answer.

4		mineral and a second	ALCOHOLD STREET
F	ndo	ther	mic
	iiuo	ciicii	

Exothermic

(1 mark)

Explanation:

products vieneans

Savour the endothermic

forward reaction is

(3 marks)

(d) Using collision theory explain how Reaction 2 acts as a buffer if the [OH-] increases. Use appropriate equations in your answer.

= HPO 1 + H20

The rate of the forward raction in creases, rate

reaction stops the

Equilibrium shifts right consuming (5 marks)

change in AH is minimised.

Question 4

(9 marks)

100.0 mL of a NaOH solution with a pH = 13 has the same volume of 0.01mol L^{-1} H_2SO_4 added to it. Calculate the pH of the combined solution.

5047 = 10 molh?	
$N(0H^{-}) = 0.1 \times 0.1$	
= 0.01 mole	
n(H) = 11 x 101 x 2	

4"	4 0 H.	-)	40	

1002 mole

N(OH) in K.S. = 0.008 mole

	, at				0.04	
	MI.		1009		0.09	
[047] =	1	,000k	1212	pulla printina	0-0016	mal L-1
7			0 2			111-1

	~14	
	10	- 10
E 447 =	0,000	6.25 × 10,0 malh
	0.47	2.5~10-13
	0,04	Z . J M.O

HA	= 4	= 12.6		

Ouestion 5

(4 marks)

There is evidence to suggest that the increase in ocean acidification is caused carbon dioxide produced as a result of human activity such as the burning of fossil fuels. The chemistry of carbon dioxide dissolving in seawater is summarized in the equations below.

Equation 1

$$CO_2(g) \rightleftharpoons CO_2(aq)$$

Equation 2

$$CO_2(aq) + H_2O(\ell) \rightleftharpoons H_2CO_3(aq)$$

Equation 3

$$H_2CO_3(aq) + H_2O(\ell) \rightleftharpoons H_3O^+(aq) + HCO_3^-(aq)$$

Equation 4

$$HCO_3^-(aq) + H_2O(\ell) \rightleftharpoons H_3O^+(aq) + CO_3^{2-}(aq)$$

How does an increase in atmospheric carbon dioxide can lead to an increase in acidity in seawater?

Equations 3 + 4 increases

(2 marks)

There is also evidence that the increased acidity is causing thinning of seashells. Write an ionic equation for this process.

Ca (0) +1 +2 HT (ag) -1 Ca (ag) + 420 (14 (0, 19)